75 research outputs found

    Jumping performance in the highly aquatic frog, Xenopus tropicalis : sex-specific relationships between morphology and performance

    Get PDF
    Frogs are characterized by a morphology that has been suggested to be related to their unique jumping specialization. Yet, the functional demands associated with jumping and swimming may not be that different as suggested by studies with semi-aquatic frogs. Here, we explore whether features previously identified as indicative of good burst swimming performance also predict jumping performance in a highly aquatic frog, Xenopus tropicalis. Moreover, we test whether the morphological determinants of jumping performance are similar in the two sexes and whether jumping performance differs in the two sexes. Finally we test whether jumping capacity is positively associated with burst swimming and terrestrial endurance capacity in both sexes. Our results show sex-specific differences in jumping performance when correcting for differences in body size. Moreover, the features determining jumping performance are different in the two sexes. Finally, the relationships between different performance traits are sex-dependent as well with females, but not males, showing a trade-off between peak jumping force and the time jumped to exhaustion. This suggests that different selective pressures operate on the two sexes, with females being subjected to constraints on locomotion due to their greater body mass and investment in reproductive capacity. In contrast, males appear to invest more in locomotor capacity giving them higher performance for a given body size compared to females

    htsint: a Python library for sequencing pipelines that combines data through gene set generation

    Get PDF
    Background: Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. Results: We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. Conclusion: The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint

    Immune responses of wild birds to emerging infectious diseases

    Get PDF
    Over the past several decades, outbreaks of emerging infectious diseases (EIDs) in wild birds have attracted worldwide media attention, either because of their extreme virulence or because of alarming spillovers into agricultural animals or humans. The pathogens involved have been found to infect a variety of bird hosts ranging from relatively few species (e.g. Trichomonas gallinae) to hundreds of species (e.g. West Nile Virus). Here we review and contrast the immune responses that wild birds are able to mount against these novel pathogens. We discuss the extent to which these responses are associated with reduced clinical symptoms, pathogen load and mortality, or conversely, how they can be linked to worsened pathology and reduced survival. We then investigate how immune responses to EIDs can evolve over time in response to pathogen-driven selection using the illustrative case study of the epizootic outbreak of Mycoplasma gallisepticum in wild North American house finches (Haemorhous mexicanus). We highlight the need for future work to take advantage of the substantial inter- and intraspecific variation in disease progression and outcome following infections with EID to elucidate the extent to which immune responses confer increased resistance through pathogen clearance or may instead heighten pathogenesis.Auburn UniversityNatural Environment Research Council grant (NERC

    Quantitative host resistance drives the evolution of increased virulence in an emerging pathogen

    Get PDF
    Emergent infectious diseases can have a devastating impact on host populations. The high selective pressures on both the hosts and the pathogens frequently lead to rapid adaptations not only in pathogen virulence but also host resistance following an initial outbreak. However, it is often unclear whether hosts will evolve to avoid infection‐associated fitness costs by preventing the establishment of infection (here referred to as qualitative resistance ) or by limiting its deleterious effects through immune functioning (here referred to as quantitative resistance ). Equally, the evolutionary repercussions these different resistance mechanisms have for the pathogen are often unknown. Here, we investigate the co‐evolutionary dynamics of pathogen virulence and host resistance following the epizootic outbreak of the highly pathogenic bacterium Mycoplasma gallisepticum in North American house finches (Haemorhous mexicanus ). Using an evolutionary modelling approach and with a specific emphasis on the evolved resistance trait, we demonstrate that the rapid increase in the frequency of resistant birds following the outbreak is indicative of strong selection pressure to reduce infection‐associated mortality. This, in turn, created the ecological conditions that selected for increased bacterial virulence. Our results thus suggest that quantitative host resistance was the key factor underlying the evolutionary interactions in this natural host–pathogen system.Publisher PDFPeer reviewe

    lpEdit: an editor to facilitate reproducible analysis via literate programming

    Get PDF
    ArticleCopyright 2013 Adam J Richards et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited .There is evidence to suggest that a surprising proportion of published experiments in science are difficult if not impossible to reproduce. The concepts of data sharing, leaving an audit trail and extensive documentation are fundamental to reproducible research, whether it is in the laboratory or as part of an analysis. In this work, we introduce a tool for documentation that aims to make analyses more reproducible in the general scientific community. The application, lpEdit, is a cross-platform editor, written with PyQt4, that enables a broad range of scientists to carry out the analytic component of their work in a reproducible manner—through the use of literate programming. Literate programming mixes code and prose to produce a final report that reads like an article or book. lpEdit targets researchers getting started with statistics or programming, so the hurdles associated with setting up a proper pipeline are kept to a minimum and the learning burden is reduced through the use of templates and documentation. The documentation for lpEdit is centered around learning by example, and accordingly we use several increasingly involved examples to demonstrate the software’s capabilities. We first consider applications of lpEdit to process analyses mixing R and Python code with the LATEX documentation system. Finally, we illustrate the use of lpEdit to conduct a reproducible functional analysis of high-throughput sequencing data, using the transcriptome of the butterfly species Pieris brassica

    Developmental plasticity affects sexual size dimorphism in an anole lizard

    Get PDF
    This is the peer reviewed version of the following article: Bonneaud, C., Marnocha, E., Herrel, A., Vanhooydonck, B., Irschick, D. J., Smith, T. B. (2015), Developmental plasticity affects sexual size dimorphism in an anole lizard. Functional Ecology, which has been published in final form at 10.1111/1365-2435.12468. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving: http://olabout.wiley.com/WileyCDA/Section/id-820227.html#termsSummary While developmental plasticity has been shown to contribute to sexual size dimorphism (SSD) in laboratory studies, its role in shaping SSD variation in wild vertebrate populations is unclear. Here we use a field study and a laboratory experiment to show that resource availability influences the degree of SSD among insular populations of Anolis sagrei lizards in the Bahamas. Total amounts of food biomass explained variation in male, but not female, body size on six Bahamian islands, giving rise to significant differences in SSD. Laboratory experiments on a captive colony of A. sagrei confirmed that variation in SSD was mediated by the effects of prey biomass on developmental plasticity in males, but not females. Indeed, males grew faster and attained larger sizes as adults under high-food treatments than under restricted diets, whereas adult females retained similar body sizes under both conditions. Our results indicate that the amount of food available can influence intersexual variation in body size within a vertebrate species. Sex-specific developmental plasticity may be favoured if it allows individuals to take advantage of varying levels of food opportunities offered by different habitats, by reducing competition between the sexes. As such, plasticity in response to food availability may have played a role in the invasion success of A. sagrei. This study adds to our growing understanding of the effect of resource availability in shaping SSD in reptiles and lends further support to the condition-dependent hypothesis, according to which the larger sex should display greater plasticity in growth in response to environmental conditions.Marie Curie Reintegration GrantUnited States Environmental Protection AgencyUCLA Department of Ecology and Evolutionary BiologyFund for Scientific Research (FWO-Vl), BelgiumNational Science Foundatio

    Developing an Evidence-Based Coexistence Strategy to Promote Human and Wildlife Health in a Biodiverse Agroforest Landscape

    Get PDF
    UIDB/04038/2020 UIDP/04038/2020Agroforest mosaics represent one of the most extensive human-impacted terrestrial systems worldwide and play an increasingly critical role in wildlife conservation. In such dynamic shared landscapes, coexistence can be compromised if people view wildlife as a source of infectious disease. A cross-disciplinary One Health knowledge base can help to identify evolving proponents and threats to sustainable coexistence and establish long-term project goals. Building on an existing knowledge base of human–wildlife interactions at Cantanhez National Park (NP), Guinea-Bissau, we developed a causal pathway Theory-of-Change approach in response to a newly identified disease threat of leprosy in the Critically Endangered western chimpanzee (Pan troglodytes verus). The goals of our project are to improve knowledge and surveillance of leprosy in humans and wildlife and increase capacity to manage human–wildlife interactions. We describe the core project activities that aim to (1) quantify space use by chimpanzees across Cantanhez NP and determine the distribution of leprosy in chimpanzees; (2) understand the health system and local perceptions of disease; and (3) identify fine-scale risk sites through participatory mapping of resources shared by humans and chimpanzees across target villages. We discuss the development of a biodiversity and health monitoring programme, an evidence-based One Health campaign, and a One Health environmental management plan that incorporates the sharing of space and resources, and the disease implications of human–non-human great ape interactions. We demonstrate the importance of multi-stakeholder engagement, and the development of strategy that fully considers interactions between people, wildlife, and the environment.publishersversionpublishe

    Within-Host Speciation of Malaria Parasites

    Get PDF
    BACKGROUND: Sympatric speciation—the divergence of populations into new species in absence of geographic barriers to hybridization—is the most debated mode of diversification of life forms. Parasitic organisms are prominent models for sympatric speciation, because they may colonise new hosts within the same geographic area and diverge through host specialization. However, it has been argued that this mode of parasite divergence is not strict sympatric speciation, because host shifts likely cause the sudden effective isolation of parasites, particularly if these are transmitted by vectors and therefore cannot select their hosts. Strict sympatric speciation would involve parasite lineages diverging within a single host species, without any population subdivision. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a case of extraordinary divergence of sympatric, ecologically distinct, and reproductively isolated malaria parasites within a single avian host species, which apparently occurred without historical or extant subdivision of parasite or host populations. CONCLUSIONS/SIGNIFICANCE: This discovery of within-host speciation changes our current view on the diversification potential of malaria parasites, because neither geographic isolation of host populations nor colonization of new host species are any longer necessary conditions to the formation of new parasite species
    • 

    corecore